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Introduction

Sources of stress for fish include temperature, salinity, and 
breeding density [1]. In particular, changing water tempera-
ture induces oxidative stress in teleosts and is known to have 
negative effects such as the reduction of antioxidant regula-
tion and immune function [2, 3].

In general, when a fish is exposed to an acute tempera-
ture change, a large amount of stress is induced in the fish’s 
body [4, 5]. The organism has a stress defense mechanism 
to maintain in vivo homeostasis during stress [6, 7]. This 
response to stress is regulated by the hypothalamic-pitui-
tary-interrenal axis. First, corticotropin-releasing hormone 
is secreted in the hypothalamus, then it acts on the anterior 
pituitary to stimulate the secretion of adrenocorticotropic 
hormone (ACTH) [6]. ACTH, which is derived from the 
pro-opiomelanocortin precursor protein, then stimulates the 
synthesis and release of cortisol in the interrenal cells of the 
head kidney [6, 8]. Cortisol has also been reported to be the 
direct cause of the increase in plasma glucose [9, 10].

In the bodies of fish exposed to stressors such as rapid 
water temperature changes, heat shock proteins (HSPs) are 
produced in large quantities. HSPs repair the proteins dam-
aged by these external environmental factors and allow the 
cells to maintain their normal functions [8, 11, 12].

The stress caused by changing water temperature causes 
increased activity of  Na+/K+-ATPase (NKA) in gills. NKA 
is an enzyme involved in maintaining homeostasis, including 
gas exchange, regulation of osmotic pressure, and acid–base 
balance, by activating chloride cells in the gills [13, 14]. Kang 
et al. [15] reported that acute water temperature changes 
(28 → 18 °C) significantly decreased the activity of NKA in 
juvenile milkfish Chanos chanos. Mitrovic and Perry [16] also 
reported that exposure to an acute water temperature change 
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(25 → 7 °C) decreased the activity of NKA significantly in 
goldfish Carassius auratus.

Another effect of stress on organisms is a negative effect 
on maintaining immunity. In particular, immunoglobulin M 
(IgM) and lysozyme have been used as immune indicators 
[7, 17, 18]. Recent studies have shown that levels of these 
two immune indicators significantly change in fish exposed to 
specific wavelengths of light [19, 20].

In other words, light has effects on physiological responses 
such as immune control and stress [19, 21, 22]. Studies have 
been conducted on the effects of specific wavelengths on a 
variety of physiological responses using light-emitting diodes 
(LEDs), which can be manufactured to output specific wave-
lengths [19, 23, 24]. LEDs have various advantages, including 
low power consumption, long life, and high efficiency. Thus, 
the positive effects of specific wavelengths on organisms can 
be positively associated with aquaculture.

The black rockfish, Sebastes schlegelii, is an ovovivipa-
rous fish belonging to the order Scorpaeniformes and family 
Scorpaenidae, and is known to have an optimum temperature 
of 18–22 °C. This species is sensitive to light and has been 
reported to react sensitively to various wavelengths of visible 
light, especially the blue-green part of the spectrum [25]. It is 
an important aquaculture species because it grows faster than 
other species [26, 27]. However, at aquaculture sites on the 
southern coast of Korea, cold pools occur frequently, leading 
to mass mortality of black rockfish. Cold pools occur mainly in 
the summer season and are known to create temperature zones 
about 5 °C colder than the surrounding sea [28].

Therefore, in the present study, we investigated the endo-
crine changes caused by physiological stress in black rock-
fish exposed to acute temperature changes such as those in 
cold pools, and we tested whether specific-wavelength light 
could adjust the induced stress response. The rearing envi-
ronment was established as one of two types: a progressive 
stepwise change or a direct decline in water temperature. We 
examined the stress responses (cortisol, glucose, HSP70, and 
NKA), immunoregulatory responses (IgM and lysozyme), 
and the changes in hormone levels and enzyme activities of 
rockfish exposed to the low-temperature environment, while 
irradiating the fish with various light sources. In addition, a 
comet assay was performed to determine whether specific 
wavelengths are effective in reducing the nuclear DNA 
damage that is expected to be caused by rapid temperature 
change.

Materials and methods

Experimental fish and conditions

Black rockfish, Sebastes schlegelii (n  =  135, length 
18.5 ± 0.5 cm, mass 27.2 ± 0.8 g), were provided by the 

Korea Institute of Ocean Science & Technology (Tong-
yeong, Korea), and were allowed to acclimate for 1 week in 
nine 300-L circulation filter tanks in the laboratory (15 indi-
viduals per tank). The tanks were equipped with automatic 
temperature regulation systems (JS-WBP-170RP; Johnsam, 
Seoul, Korea). The fish were divided into two experimental 
groups, one with a progressive stepwise change in water 
temperature [experiment (Exp.) I] and the other a direct 
decline in water temperature (Exp. II), each starting at 20 °C 
water temperature (normal temperature). In Exp. I groups, 
the water temperature was decreased from 20 to 14 °C in 
daily decrements of 2 °C, and then increased to 20 °C by 
daily increments of 2 °C. Exp. II groups were moved into 
14 °C tanks immediately; 24 h later, they were returned to 
20 °C water. The control groups were exposed to 20 °C 
and no change in temperature during the experiment. Fish 
were allowed to acclimate to each experimental temperature 
[20 → 14 → 20 °C] for 24 h before samples were taken. 
In this study, no fish died in any group. Each group was 
divided into three subgroups (n = 5 each): two experimen-
tal groups that were exposed to green (peak at 530 nm) or 
blue (peak at 450 nm) light-emitting diodes (LEDs; Daesin 
LED, Kyunggi, Korea); and a control group irradiated with 
a white fluorescent bulb (stimulated natural photoperiod; 
SNP) (Fig. 1). The photoperiod was a 12-h light:12-h dark 
cycle (lights on at 07:00 hours and off at 19:00 hours). The 
LEDs were placed 50 cm above the water surface, and the 
irradiance at the surface was maintained at approximately 
0.5 W/m2. This protocol was used because a light intensity 
of 0.5 W/m2 has the effect of causing a physiological change 
[24]. Spectral analysis of the lights was performed using a 
Photo-Radiometer HD 2102.1 (Delta OHM, Padova, Italy). 
The fish were reared under these conditions with a daily feed 
of commercial feed until the day prior to the sampling. Fish 
were anaesthetized with 200 μL/L 2-phenoxyethanol (Dae-
jung, Kyunggi, Korea) to minimize stress prior to blood and 
tissue collection. Blood was collected rapidly from the cau-
dal vein using a 1-mL syringe coated with heparin. Plasma 
samples were separated by centrifugation (4 °C, 1000 g, for 
10 min) and stored at − 80 °C until analysis. Tissues were 
collected, immediately frozen in liquid nitrogen, and stored 
at − 80 °C until total RNA was extracted for analysis.

Total RNA extraction and complementary DNA 
synthesis

Total RNA was extracted from each sample using TRI Rea-
gent (Molecular Research Center, Cincinnati, OH), accord-
ing to the manufacturer’s instructions. Then, 2 μg of total 
RNA was reverse-transcribed in a total reaction volume of 
20 μL, using an oligo-(dT)15 anchor and M-MLV reverse 
transcriptase (Promega, Madison, WI), according to the 
manufacturer’s protocol. The resulting complementary DNA 
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(cDNA) was diluted and stored at 4 °C for use in polymerase 
chain reaction (PCR) and real-time quantitative PCR (qPCR) 
analysis.

Quantitative PCR

The qPCR analysis was conducted to determine the relative 
expression levels of the antioxidant enzymes HSP70 and 
NKA using total RNA extracted from the livers and gills 
of the black rockfish. The primers for qPCR were designed 
using known black rockfish sequences (Table 1). We con-
ducted qPCR amplification using iCycler iQ Multicolor 
Real-Time PCR Detection System (Bio-Rad, Hercules, CA) 
and the iQ SYBR Green Supermix (Bio-Rad), according to 
the manufacturer’s instructions. β-actin was also amplified 
as a control for each sample, and all data were expressed 
as the change with respect to the corresponding calculated 
β-actin threshold cycle (Ct) levels. All analyses were based 
on the Ct values of the PCR products. The Ct was defined 
as the PCR cycle in which the fluorescence signal crossed a 
threshold during the exponential phase of the amplification 
curve. The calibrated ΔCt value (ΔΔCt) of each sample and 
the internal control (β-actin) were calculated [ΔΔCt = 2^ −  

(ΔCtsample − ΔCtinternal control)]. After PCR was completed, 
the qPCR data from three replicate samples were analyzed 
using Bio-Rad to estimate the transcript copy numbers of 
each sample.

Plasma parameter analysis

Plasma samples were separated by centrifugation (4 °C, 
1000  g, for 10  min). Cortisol, IgM, and lysozyme lev-
els were analyzed using an immunoassay with an ELISA 
kit (cortisol, MBS704055; IgM, MBS700823; lysozyme, 
MBS099538; Mybiosource, San Diego, CA). Absorbance 
was read at 450 nm, and the concentration was interpolated 
from a standard curve.

Plasma glucose levels were measured using a dry mul-
tilayered analytic slide method in a biochemistry auto ana-
lyzer (Fuji Dri-Chem 4000; Fujifilm, Tokyo).

NKA analysis

Gill tissue NKA was extracted from gill tissues of each sam-
ple by homogenization and centrifugation (4 °C, 1000 g, for 
15 min) in ice-cold phosphate-buffered saline. The NKA 
concentration was analyzed using an immunoassay with an 
ELISA kit (MBS084723; NAK, Mybiosource). Absorbance 
was read at 450 nm, and the concentration was interpolated 
from a standard curve.

Comet assay

The comet assay is a relatively simple, sensitive technique 
for quantitatively measuring DNA damage in eukaryotic 
cells [29]. Liver cells (1 × 105 cells/mL) were examined 
using a Comet Assay Reagent Kit for single-cell gel elec-
trophoresis (Trevigen, Gaithersburg, MD), according to the 
methods described by Singh et al. [30]. Cells were immo-
bilized in agarose gel on Comet Assay slides and immersed 
in freshly prepared alkaline unwinding solution for 20 min. 

Fig. 1  Spectral profiles of light-
emitting diodes (LEDs; blue, 
450 nm; green, 530 nm) and 
white fluorescent bulb (control) 
in this study. LEDs were set to 
an intensity of 0.5 W/m2. SNP 
Stimulated natural photoperiod

Table 1  Primers used for quantitative polymerase chain reaction 
amplification

HSP70 Heat shock protein 70, NKA  Na+/K+-ATPase

Gene (accession no.) Primer DNA sequences

HSP70
(KC172645)

Forward 5ʹ-AGG GAT AAA GTC TCT GCC 
AAG -3ʹ

Reverse 5ʹ-TCA ATC ACC GTC TTC 
TCGTC-3ʹ

NKA
(HQ6655051)

Forward 5ʹ-TTA GCG GTC AGG GTC AGA -3ʹ
Reverse 5ʹ-GGT GTC TCC TTC TTC GTC  C-3ʹ

β-actin
(JN226153)

Forward 5ʹ-GAC CAC CTA CAA CAG CAT 
CAT-3ʹ

Reverse 5ʹ-TAC CTC CAG ACA GCA CGG -3ʹ
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Slides were then electrophoresed at 15 V for 30 min. Sam-
ples from fish exposed to SNP and green LED at 20 (con-
trol), 14, and 20 °C were stained with SYBR Green (Trevi-
gen) for 30 min in the dark, and read using a fluorescence 
microscope (excitation filter 465–495 nm; Eclipse Ci, Nikon, 
Japan). At least 100 cells from each slide were analyzed. 
For quantification, we analyzed the tail length (distance of 
DNA migration from the head) and % DNA in the tail (tail 
intensity/total intensity × 100) using the Comet Assay IV 
image analysis software (version 4.3.2; Perceptive Instru-
ments, UK).

Statistical analysis

All data were analyzed using the SPSS statistical package 
(version 10.0; SPSS, Chicago, IL). A two-way ANOVA fol-
lowed by Tukey’s post hoc test was used to compare differ-
ences in the data (P < 0.05). The values are expressed as 
the mean ± SE.

Results

Change in concentrations of cortisol and glucose

The plasma cortisol concentrations in all experimental 
groups increased significantly due to a change of tempera-
ture to 14 °C, and then decreased significantly as the tem-
perature rose again to 20 °C. However, the cortisol concen-
trations in Exp. II were generally higher than those in Exp. 
I. The cortisol levels in the green and blue LED treatments 
were significantly lower than in SNP (Fig. 2a, b).

The plasma glucose concentrations in all experimental 
groups increased significantly due to a change of tempera-
ture to 14 °C, and then decreased significantly as the tem-
perature rose again to 20 °C. However, the glucose concen-
trations in Exp. II were generally higher than in Exp. I. The 
glucose levels in the green and blue LED treatments were 
significantly lower than those in SNP (Fig. 2c, d).

Change in messenger RNA expression of HSP70

The change of messenger RNA (mRNA) expression of 
HSP70 in black rockfish exposed to low water tempera-
tures under the different wavelengths of LEDs are shown 
in Fig. 3a, b. The change of mRNA expression increased 
significantly with temperature decrease in all experimen-
tal groups. In addition, the levels of mRNA expression of 
HSP70 showed significant decreases with exposure to green 
or blue LED. In particular, the levels in the green LED treat-
ment groups were significantly lower than those observed in 
the other light groups.

Changes in mRNA expression and concentrations 
of NKA

The changes in NKA mRNA expression and concentra-
tions in gill tissue of black rockfish exposed to low water 
temperature under the different wavelengths of LEDs are 
shown in Fig. 4a, b. The mRNA concentrations in all experi-
mental groups decreased significantly due to a change of 
temperature to 14 °C, and then increased significantly as the 
temperature rose again to 20 °C. The NKA mRNA expres-
sion and concentrations in Exp. II were generally lower than 
those in Exp. I. The NKA concentrations in the green and 
blue LED groups were significantly higher than those in the 
white fluorescent bulb (SNP) group (Fig. 4c and d).

Changes in plasma concentrations of IgM and lysozyme

The plasma concentrations of IgM in all experimental 
groups decreased significantly due to a change of tempera-
ture to 14 °C, and then increased significantly as the tem-
perature rose again to 20 °C. The IgM concentrations in 
Exp. II were generally lower than those in Exp. I. The IgM 
concentrations in the green and blue LED treatments were 
significantly higher than those in SNP (Fig. 5a, b). The vari-
ations in the plasma lysozyme concentrations were similar to 
the variations in the plasma IgM concentrations (Fig. 5c, d).

Comet assay

The comet assay is shown in Fig. 6. The DNA content in 
the tail and tail length both increased significantly at 14 °C. 
Nuclear DNA tail and tail length decreased significantly as 
the temperature rose again to 20 °C. Nuclear DNA content 
and tail length in the green and blue LED treatments were 
significantly lower than those in SNP.

Discussion

This study was conducted to investigate whether the effects 
of stress can be mitigated and immunity enhancement 
obtained by irradiating black rockfish with LEDs while 
exposing them to a low-temperature environment. The fish 
were divided into two groups, then exposed to a low-tem-
perature environment using either a progressive stepwise 
change (Exp. I) or a direct decline (Exp. II) in water temper-
ature. We observed physiological responses using molecular 
biological methods.

The plasma cortisol and glucose levels, which are phys-
iological stress indicators, were significantly increased fol-
lowing the water temperature decrease. An acute change 
in water temperature induced oxidative stress in the fish, 
and caused an increase in plasma cortisol concentration. 
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At this time, the fish’s energy requirement increased to 
compensate for the energy consumed by oxidative stress. 
For that reason, gluconeogenesis was promoted and the 
glucose level increased [31, 32]. After the black rockfish 
were recovered to their initial (normal) water tempera-
ture (20 °C) after exposure to a low-temperature (14 °C) 
environment, the plasma levels of cortisol and glucose 
remained higher in Exp. II than in Exp. I. However, in 
the low-temperature groups irradiated with green or blue 
wavelengths, the plasma cortisol and glucose concentra-
tions were significantly decreased when compared to the 
SNP control.

Based on a similar study, Kim et al. [24] reported that 
oxidative stress was significantly increased when flatfish, 
Paralichthys olivaceus, were exposed to high-water-temper-
ature environments. However, as a result of irradiation with 
green and blue wavelengths, oxidative stress was signifi-
cantly decreased.

In the present study, similar to previous studies, the black 
rockfish showed significant increases in cortisol and glucose 
concentrations due to a large amount of stress in the body 
when exposed to a low-temperature environment. However, 
we suggest that short-wavelength lights such as green and 
blue LEDs are effective in reducing stress.

In this study, HSP70 mRNA expression was signifi-
cantly increased following water temperature decrease in 
both experimental groups (Exp. I and Exp. II). However, 
despite the water’s return to the initial temperature, HSP70 
mRNA expression was maintained at significantly higher 
levels in Exp. II compared to Exp. I. Green and blue LEDs 
significantly reduced HSP70 mRNA expression in the low-
water-temperature groups. HSP70, which is a protein par-
ticularly sensitive to environmental stress factors such as 
water temperature [33], seems to play a role in maintaining 
the normal function of liver cells in fish exposed to water 
temperature stress, because it plays a role in stabilizing the 

Fig. 2  Changes in plasma cortisol concentrations of experiment 
(Exp.) I (a) and Exp. II (b) groups, and plasma glucose concentra-
tions of Exp. I (c) and Exp. II (d) groups during water temperature 
changes [20 → 14 → 20 °C] under light conditions using green, blue 
light-emitting diode (LED) and SNP, as measured using a microplate 
reader. The lowercase letters indicate the temperatures (a 20  °C, b 

14 °C, c return to 20 °C) and the different numbers indicate signifi-
cant differences within a temperature (P < 0.05). All values are rep-
resented as mean ± SE (n = 5). Exp. I Progressive stepwise decline in 
water temperature, Exp. II direct decline of water temperature, Cont. 
control, G green LED, B blue LED
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Fig. 3  Change in heat shock protein 70 (HSP70) messenger RNA 
(mRNA) expression of Exp. I (a) and Exp. II (b) groups during water 
temperature changes under light conditions using green LED, blue 
LED, and SNP, as normalized fold expression levels with respect 
to the β-actin levels in each sample. The lowercase letters indicate 

the temperatures (a 20  °C, b 14  °C, c return to 20  °C) and the dif-
ferent numbers indicate significant differences within a temperature 
(P  <  0.05). All values are represented as mean  ±  SE (n  =  5). For 
other abbreviations, see Figs. 1 and 2

Fig. 4  Change in  Na+/K+-ATPase (NKA) messenger RNA (mRNA) 
expression of Exp. I (a) and Exp. II (b) groups and concentration of 
Exp. I (c) and Exp. II (d) groups during water temperature changes 
under light conditions using green LED, blue LED, and SNP, as nor-
malized fold expression levels with respect to the β-actin levels and as 

meaured using a microplate reader in each parameter. The lowercase 
letters indicate the temperatures (a 20 °C, b 14 °C, c return to 20 °C) 
and the different numbers indicate significant differences within 
a temperature (P < 0.05). All values are represented as mean ± SE 
(n = 5). For other abbreviations, see Figs. 1 and 2
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tertiary structure of the synthesized protein, thus maintain-
ing normal cell function [11, 34].

Kim et al. [24] reported that HSP mRNA expression was 
significantly increased when goldfish were exposed to low 
water temperature. However, as a result of irradiation with 
green or blue wavelengths, it was significantly decreased.

Similarly, HSP70 mRNA expression was significantly 
increased in black rockfish exposed to water temperature 
shock with changing water temperature. It appears that black 
rockfish can counter the stress in the body and reduce dam-
age to liver cells because of the stress-reducing effect of 
green and blue LEDs.

To investigate the effects of stress induced by a direct 
decline in water temperature on the function of gills, we 
analyzed NKA mRNA expression and concentration in black 
rockfish gills. In both of the low-temperature groups (Exp. 
I and Exp. II), NKA mRNA expression and concentration 
significantly decreased; however, they tended to increase 
when the fish were recovered to a normal water temperature 

(20 °C). After irradiating the low-temperature groups (Exp. 
I and Exp. II) with green or blue LEDs, NKA mRNA expres-
sion and concentration significantly increased. In general, 
morphological changes of gill filaments occur when fish 
are exposed to temperatures below the habitat temperature 
[35]. Sardella et al. [36] reported that the activity of NKA 
decreased in tilapia exposed to low water temperatures. 
Mitrovic and Perry [16] reported that the NKA concentra-
tion in gills was significantly decreased when goldfish were 
exposed to a rapidly decreasing temperature environment 
(25 → 7 °C). Acutely changing water temperature signifi-
cantly decreased the NKA mRNA expression and concen-
tration in gills. Thus, acutely changing conditions lead 
to changes in morphology and function of gills, and it is 
thought that the activity of NKA decreased as a result. Green 
and blue LEDs play a role in mitigating the negative effects 
of an acute change in water temperature.

In addition, we investigated the effects of acute changes 
in water temperature on the immune parameters of black 

Fig. 5  Changes in plasma immunoglobulin M (IgM) concentration 
of Exp. I (a) and Exp. II (b) groups, and plasma lysozyme concen-
tration of Exp. I (c) and Exp. II (d) groups during water temperature 
changes using green, blue LED and SNP, as measured using a micro-
plate reader. The lowercase letters indicate the temperatures (a 20 °C, 

b 14 °C, c return to 20 °C) and the different numbers indicate signifi-
cant differences within a temperature (P < 0.05). All values are rep-
resented as mean ± SE (n = 5). For other abbreviations, see Figs. 1 
and 2
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rockfish. We observed changing levels of IgM and lysozyme, 
immunity indicators, in plasma. In both of the low-water-
temperature experimental groups, the levels of IgM and 
lysozyme were significantly decreased. When the water was 
restored to its initial temperature, they tended to increase 
again. However, despite returning to normal water tempera-
ture, the levels of IgM and lysozyme were not recovered 
fully in all experimental groups. After fish were exposed to 

low water temperature and green or blue LED irradiation, 
the levels of IgM and lysozyme in plasma tended to signifi-
cantly decrease with the return to normal water temperature.

In support of our results, Park et  al. [37] reported 
that  H2O2, an indicator of stress in the body, was signifi-
cantly increased when clownfish Amphiprion melanopus 
were exposed to a low-water-temperature environment 
(28 → 20 °C). On the other hand, the plasma concentration 

Fig. 6  Comet assay images (a) and comet assay parameter tail length 
and  % DNA in tail (b). Comet assay of liver cell nuclear DNA dam-
age under light conditions of green LED, blue LED, and SNP dur-
ing temperature change. White arrows in a indicate damaged nuclear 
DNA (DNA breaks) in liver cells, which have been stained with 

SYBR Green. Scale bars  =  100  μm. The lowercase letters indicate 
the temperatures (a 20  °C, b 14  °C, c return to 20  °C) and the dif-
ferent numbers indicate significant differences within a temperature 
(P  <  0.05). All values are represented as mean  ±  SE (n  =  5). For 
abbreviations, see Figs. 1 and 2
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of lysozyme decreased significantly, suggesting that a large 
number of free radicals are generated in response to acute 
water temperature changes, directly decreasing immune 
parameters.

Kim et al. [24] and Jung et al. [3] reported that the lev-
els of melatonin and lysozyme were significantly decreased 
when fish were exposed to acute changes of water tempera-
ture (low and high temperature). They were significantly 
increased under green-wavelength LEDs. Green LEDs 
seem to have a positive effect, enhancing immune function, 
because green-wavelength LED light effectively reduces 
oxidative stress.

Similar to results of previous studies, in this study, we 
found that green and blue wavelength light significantly 
decreased the generated stress in the body by playing a 
key role in improving immune efficiency despite the stress 
induced by an acute change in water temperature which sig-
nificantly decreased the immune response.

In this study, we also conducted a comet assay to inves-
tigate the effects of low-temperature conditions on nuclear 
DNA of black rockfish. The liver cells in control groups 
showed normal nuclear DNA. However, tail length and % 
DNA in the tail in liver cells were significantly increased 
in both low-temperature experimental groups, which means 
that the damage to nuclear DNA was caused by water tem-
perature. After recovery to normal water temperature, the 
nuclear DNA damage in liver cell in Exp. II was higher than 
that in Exp. I. Irradiation with green or blue LEDs tended to 
reduce the nuclear DNA damage in liver cells of fish.

In a similar study of nuclear DNA damage of liver cells, 
Kim et al. [24] reported that nuclear DNA damage signifi-
cantly increased with exposure to a high-water-temperature 
environment, but the nuclear DNA damage in liver cells sig-
nificantly decreased with irradiation with green-wavelength 
LEDs.

Therefore, in this study, similar to previous studies, the 
stress caused by exposure to acute changes in water tempera-
ture led to nuclear DNA damage in liver cells of black rock-
fish, but green-wavelength light seemed to have a function 
in protecting the cells while decreasing the nuclear DNA 
damage to liver cells.

In summary:

1. Black rockfish, when exposed to low water temperatures 
similar to those of cold pools, showed differences in 
stress and physiological recovery responses following 
different rates of change in water temperature.

2. We suggest that green and blue wavelengths play roles 
in stress reduction and have positive effects on immu-
nity.

3. When cold pools affect aquaculture fish, irradiation 
with a short wavelength such as green might be effec-
tive in not only reducing the time required for the fish to 

recover normal function, but also their ability to restore 
physiological function at all.

LEDs seem to play a positive role in physiological stress 
and immunity in our study. Nevertheless, there is still lit-
tle research on the mechanisms of the effects of LEDs on 
each stress and immunity indicator. Physiological changes 
may occur through complex mechanisms by interaction with 
photoreceptors (red opsin, blue opsin, green opsin, and oth-
ers) in the retina. Furthermore, it is possible that light at 
a specific wavelength is more effective in the aquaculture 
of fish normally exposed to limited wavelengths of light, 
and studies on the interactions of fish photoreceptors with 
physiological indicators at specific wavelengths are needed.
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