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We determined the molecular mechanism underlying the environmental (photoperiodic) regulation of
sexual maturation in fish, we examined the expression of sexual maturation-related hormones and
vertebrate ancient long opsin (VAL-opsin) in goldfish (Carassius auratus) exposed to different light
spectra (red and green light-emitting diodes). We further evaluated the effect of exogenous gonadotropin
hormone (GTH) on the expression of VAL-opsin under different light conditions. Our results demon-
strated that the expression of GTHs was higher in the fish exposed to green light, and VAL-opsin levels
were increased in the fish receiving GTH injection. Therefore, we have uncovered a molecular mecha-
nism underlying the environmental (light)-induced trigger for sexual maturation: VAL-opsin is activated
by green light and GTH, which promotes the expression of sexual maturation genes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Light directly or indirectly affects the circadian rhythm, growth,
and sexual maturation of fish [1—3]. As the light passes through the
reting, it sends a signal to the neurons in the brain [4]. To date,
studies on the biological mechanisms associated with light have
generally focused on the visual light path (retina); however, little is
known about the effects of light on non-visual pathways (i.e., the
deep brain, pineal complex, and skin), despite their important roles
in animal behavior and physiology [5,6].

Vertebrates, including fish and birds, have photoreceptor cells in
the retina (rods, cones and ganglion cells) as well as in various
organs such as the pineal complex, deep brain, and skin, which
regulate activation of the hypothalamus—pituitary—gonad (HPG)
axis [3,7,8]. Initial studies conducted in birds identified the role of
opsin genes in promoting maturation through photoperiodic con-
trol, demonstrating the important role of deep-brain photorecep-
tors in the hypothalamus, such as opsin-like proteins, in regulation
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of the HPG axis [7,9,10].

The pioneering study on vertebrate deep-brain photoreception
demonstrated that a light-induced change in skin color of the Eu-
ropean minnow (Phoxinus laevis) is not abolished by removal of the
eyes and pineal complex, and the light sensitivity was instead
ascribed to the “deep-brain photoreceptor” located at the epen-
dyma of the diencephalic ventricle [11]. The involvement of deep-
brain photoreceptors in the photoperiodic response of gonadal
development was also suggested in channel catfish (Ictalurus
punctatus) [12—14].

To date, several opsins, including rhodopsin, cone-like opsin,
vertebrate ancient (VA) opsin, VA-long (VAL) opsin, and melanop-
sin, have been found in the brains of fishes [15—19]. Among these,
VA-opsin and VAL-opsin share a common core sequence in the
membrane-spanning domains, although VAL-opsin has a much
longer C-terminal tail than that of VA-opsin. Functional reconsti-
tution experiments on the recombinant proteins showed that VAL-
opsin bound with 11-cis-retinal is a green-sensitive pigment
(Amax ~ 500 nm), whereas VA-opsin exhibited no photosensitivity
even in the presence of 11-cis-retinal [ 15]. Furthermore, it has been
demonstrated that the deep-brain stimulator VAL-opsin is closely
related to maturation in birds [9].

Sexual development and maturation in teleosts are regulated by
various sex hormones in the HPG axis, including gonadotropin-
releasing hormone (GnRH), gonadotropin hormone (GTH), and
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steroid hormones, and are regulated elsewhere by neuroendocrine
materials and gonadal hormones [20]. In particular, GTHs are pi-
tuitary hormones that are secreted by GnRH stimulation, and are
reported to play important roles in the regulation of gonadal
development and sexual differentiation and stimulate spawning
times and steroid hormone regulation in vertebrates, including fish
[21]. In general, in fish, follicle-stimulating hormone (FSH) is
involved in early gametogenesis, vitellogenin synthesis, and sper-
matogenesis, whereas luteinizing hormone (LH) is known to
regulate final gonad maturation, ovulation, ejaculation, and steroid
hormone synthesis [22,23].

Light induce or inhibit the photoreceptors in organisms, thereby
influence the physiological processes [24] and sexual maturation by
strongly affecting neuroendocrine control and the HPG axis [25,26].
Recent research has provided novel insights into the effect of light
on fish maturation [3,27—29]; however, understanding of the effect
of the various wavelengths of light on photoreceptor activation and
photoreceptor-related maturation remains incomplete.

So, a light-emitting diode (LED) has the dual advantage of being
able to emit light within a specific wavelength range with easily
adjustable sensitivity. Thus, an LED is highly effective in light-
related research [30,31]. In addition, Migaud et al. [2] showed
that most of the light energy is wasted in the long wavelengths such
as red light, which is rapidly absorbed by water molecules. Thus, a
fish can generally detect short wavelengths such as green light
better than longer wavelengths such as red light. However, studies
on the relationship between VAL-opsin, a green-sensitive photo-
receptor, and maturation during circadian are very limited in the
fish.

Therefore, in the present study, we investigated the physiolog-
ical rhythms of VAL-opsin and GTHs in goldfish by exposure to two
kinds of LED light (red and green) and a white fluorescent bulb
(control), and the differences between VAL-opsin and GTHs
expression with and without GTH injection were examined. This
study is the first report to focus on the relationship between VAL-
opsin and reproduction of teleost fish during circadian exposed to
various wavelengths.

2. Materials and methods
2.1. Experimental fish and conditions

For each experiment, immature goldfish (Carassius auratus)
(n = 400, length, 6.1 + 0.5 cm; mass, 12.5 + 0.4 g) were purchased
from a commercial aquarium (Choryang, Busan, Korea) and main-
tained in five 300-L circulation filter tanks prior to experiments in
the laboratory. The five experimental conditions were reared in
duplicate and with 40 fish per tank. The goldfish were reared in
automatic temperature regulation systems (JS-WBP-170RP; John-
sam Co., Buchoen, Korea); the water temperature was maintained
at 22 °C, and the fish were allowed to acclimate to the experimental
conditions for 24 h.

In the present study, the experimental design for light condition
was modified from the methods of Shin et al. [31]. The light control
group was exposed to light from a white fluorescent bulb (27 W,
wavelength range 350—650 nm); placed 50 cm above the water
surface and the light intensity at the water surface was approxi-
mately 0.96 W/m?. The experimental groups were exposed to red
(peak at 630 nm) and green (530 nm) LEDs (Daesin LED Co.
Kyunggi, Korea); placed 50 cm above the water surface. The light
intensity at the water surface was approximately 0.96 W/m? (Fig. 1).
The fish in the control and experimental groups were exposed to a
12-h light:12-h dark photoperiod (lights on at 07:00 h and lights off
at 19:00 h). The fish were reared under these conditions with daily
feeding of a commercial feed until the day prior to the sampling.
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Fig. 1. Spectral profiles of the red (630 nm) and green (530 nm) light-emitting diodes
(LEDs) used in this study. The dotted line shows the spectral profile of the white
fluorescent bulb (Cont.). Reprinted from Shin et al. [28], with permission from
Comparative Biochemistry and Physiology Part A. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

The spectral analysis of the lights was performed using a spec-
troradiometer (FieldSpec®, ASD, CO, USA). The fish were anes-
thetized with 200 mg/L 2-phenoxyethanol (Sigma, St. Louis, MO,
USA) to minimize stress prior to blood collection. The fish were
euthanized by spinal transection (first sampling at 11:00 h) at 4-h
sampling intervals (ZT4, ZT8, ZT12, ZT16, ZT20, ZT24, ZT36, and
ZT48) to collect the hypothalamus, pituitary, and blood under dim
light using an attenuated white fluorescent bulb. Plasma samples
were separated from blood sample by centrifugation (4 °C, 10,000
x g,10 min) and stored at —80 °C until analysis. The tissue samples
were removed from the fish, immediately frozen in liquid nitrogen,
and stored at —80 °C until analysis.

2.2. GTH injection

To investigate the effects of GTH on VAL-opsin expression, the
fish were anesthetized with 2-phenoxyethanol (Sigma, St. Louis,
MO, USA) prior to injection. GTH (Human chorionic gonadotropin;
WAKO, Osaka, Japan) was dissolved in 0.9% physiological saline, and
each fish was injected with GTH (5 pg/g and 10 pg/g, body mass
[BM]) at a volume of 10 puL/g BM. The sham group was injected with
an equal volume of 0.9% physiological saline (10 puL/g BM). The
control groups are same as the control of light experiment. Each
tank (each experimental group) included 40 fish. Four hours after
the injection, the retina and hypothalamus samples were removed
from the fish at 4-h sampling intervals for 2 days (first sampling at
11:00 h).

2.3. In vitro culture of cells

For cultures, the hypothalamus tissue was quickly removed at
07:00 h (lights-on time) and placed in 3 mL of ice-cold dispersion
buffer (pH 7.4, Dulbecco’s phosphate-buffered saline; Gibco-BRL,
Rockville, MD, USA). The isolated hypothalamus tissues were then
transferred to 6 mL of fresh dispersion buffer containing 0.25%
trypsin (Type II-S from porcine pancreas; Sigma). The connective
tissues and other impurities were removed, and the hypothalamus
tissues were chopped into small pieces with a pair of scissors. The
hypothalamus cells and minced hypothalamus tissue were trans-
ferred to a flask and incubated for 10 min at room temperature with
slow stirring. The mixture of dispersed hypothalamus cells and
tissues was filtered, and the culture medium (Gibco-BRL; osmo-
lality adjusted to match the goldfish plasma osmolarity of 353 mOs)
was added. The cell suspension was centrifuged at 800 x g for
10 min, and the cells were then resuspended in fresh culture me-
dium. The hypothalamus cells at a concentration of approximately
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1.2 x 10° cells/800 pL/well were transferred to a 24-well tissue
culture plate (SPL Life Sciences, Seoul, South Korea). The cell culture
was started at 07:00 h and then the cells were sampled at Zeitgeber
time (ZT) 4, ZT8, ZT12, ZT16, ZT20, ZT24, ZT36, and ZT48. ZT4, ZT8,
ZT12, and ZT36 are photophase with light, while ZT16, ZT20, ZT24,
and ZT48 are scotophase without light. For the experimental
groups, the cells were exposed to red and green LEDs, or treated to
GTH (5 pg/uL and 10 pg/uL). The lights were set same condition with
in vivo experiment. After the end of incubation, a cell dissociation
reagent (trypsin/EDTA) was used to degrade the adhesion between
the cells and wells. Then, cell suspension was centrifuged at 800 x
g for 10 min, and the supernatant was stored at —80 °C until total
RNA extraction and analysis.

2.4. Quantitative PCR (qPCR)

Total RNA was extracted from the retina and pituitary using the
TRI reagent® (Molecular Research Center, Inc., Ohio, USA) according
to the manufacturer’s instructions. Total RNA (2 pug) was reverse-
transcribed in a total volume of 20 pL, using an oligo-d(T);5 an-
chor and M-MLV reverse transcriptase (Promega, Madison, WI,
USA) according to the manufacturer’s protocol. qPCR was con-
ducted to determine the relative expression levels of VAL-opsin,
GTHa, FSHP, LHB, and f-actin mRNA using cDNA reverse-
transcribed from the total RNA extracted from the hypothalamus
and pituitary. The primers used for qPCR are shown in Table 1. PCR
amplification was conducted using a Bio-Rad CFX96™ Real-time
PCR Detection System (Bio-Rad, Hercules, CA, USA) and iQ™ SYBR
Green Supermix (Bio-Rad) according to the manufacturer’s in-
structions. The qPCR program was as follows: 95 °C for 5 min, fol-
lowed by 50 cycles of 95 °C for 20 s and 55 °C for 20 s. As internal
controls, experiments were duplicated with B-actin, and all data are
expressed relative to the corresponding B-actin threshold cycle
(ACt) levels. The calibrated ACt value (AACt) for each sample and
internal controls (B-actin) was calculated using the 2—AACt
method: [AACt = 2A—(ACtsample — ACtinternal control)]-

2.5. Western blot analysis

The fish were euthanized at 4-h sampling intervals (first sam-
pling at 11:00 h) to collect the pituitary for western blot analysis.
Total protein isolated from the pituitary of goldfish was extracted
using a T-PER® Tissue Protein Extraction Reagent (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s
instructions. A total of 25 pg of protein was loaded per lane onto
Mini-PROTEAN® TGX™ Gels (Bio-Rad), and a protein ladder (Bio-
Rad) was used for reference. Samples were electrophoresed at
180 V, and the gels were immediately transferred to a 0.2-um
polyvinylidene difluoride membrane (Bio-Rad) at 85 V for 3 min
using the Trans-Blot® Turbo™ Transfer System. Thereafter, the
membranes were blocked with 5% skim milk in 0.04% Tris-buffered

Table 1
Primers used for qPCR amplification.

Primers (Accession no.) Primer sequences (5'—3")

F: CAC CAC CTG CTT CAT CIT

R: TCA TCA CAA CCA CCATACG
F: CTC CTG TCT ATC AGT GTA TGG
R: ACA AGC AGG CGT TTA ACT

VAL-opsin (AB383149)

GTHo: (AY800266)

FSHP (D88023) F: CGT GGA AAG TGA GGA ATG
R: GTT CTG GTA AGA CAG CAT CA
LHp (D88024) F: TGT CCT ATT CTC TGT AAT TGT CC

R: GTC TCA TTA ACT GGC TCA CA
F: TGA TGT GGA CAT TCG TAA GG
R: AGG AGC AAG GGA AGT GAT

B-actin (AB039726)

saline with Tween (TTBS) for 45 min and subsequently washed in
TTBS. The membranes were incubated with a polyclonal rabbit
antibody to GTHa antibodies (anti-goldfish GTHa.; dilution, 1:4,000;
courtesy of M. Kobayashi [23]) and B-tubulin (dilution, 1:4,000;
ab6046, Abcam, Cambridge, UK), followed by horseradish
peroxidase-conjugated anti-rabbit IgG secondary antibody (dilu-
tion, 1:5,000; Bio-Rad) for 60 min. Bands were detected using a
sensitive electrochemiluminescence system (ECL Advance; GE
Healthcare Life Sciences, Uppsala, Sweden) and exposed for 2 min
using a Molecular Imager® ChemiDoc™ XRS + Systems (Bio-Rad).

2.6. Statistical analysis

All data were analyzed using the SPSS statistical package
(version 10.0; SPSS Inc., USA). A two-way ANOVA followed by
Tukey'’s post-hoc test was used to compare differences in the data
(P < 0.05). The values are expressed as the means + standard error
(SE).

3. Results
3.1. Changes in VAL-opsin mRNA expression levels

The expression of VAL-opsin mRNA using cDNA extracted from
the goldfish hypothalamus was significantly higher in the photo-
phase than in the scotophase in the control, red, and green LED
groups. In particular, the VAL-opsin expression level in the green
LED group was higher than that in the other groups (Fig. 2).
Moreover, VAL-opsin mRNA expression levels in the GTH injection
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Fig. 2. Changes in the expression levels of vertebrate ancient long opsin (VAL-opsin)
mRNA under red (R) and green (G) light-emitting diodes (LEDs) and a white fluores-
cent bulb (Cont.) in the hypothalamus (A; in vivo), hypothalamus cell culture (B;
in vitro). Results are expressed as the normalized fold-change in expression levels with
respect to the B-actin levels in the same sample. The white bar underneath the graph
represents the photophase and the black bar represents the scotophase. Values with
different characters are significantly difference exposed to the different LEDs spectra in
fish within the same time (P < 0.05). The asterisks (*) indicates significant differences
between times within the same LEDs spectra (P < 0.05). All values are means + SE
(n=05).
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group were significantly higher than those in the other groups. The
results of the experiment using cultured hypothalamus cells
treated with GTH were similar to those of the in vivo experiment

(Fig. 3).
3.2. Changes in GTHs mRNA and GTHu protein expression levels

In the green LED group, the mRNA expression levels of GTHa and
FSHpB from the goldfish pituitary at ZT12 and ZT36 were signifi-
cantly higher than those in the other groups. Furthermore, in the
green LED group, the mRNA expression levels of LHf} at ZT12, and
ZT36 were significantly higher than those of the other groups. In
addition, expression levels in the green LED group were higher than
those in the other light groups (Fig. 4B—D).

GTHo. protein expression was similar to the mRNA expression
levels; in particular, levels in the green LED group were higher than
those in the other groups (Fig. 4A).

4. Discussion

First, the goldfish were irradiated using white (control), red, and
green LED, and the expression levels of VAL-opsin were evaluated.
The VAL-opsin mRNA expression level in the green LED spectra
group was significantly higher than that in the other groups, and
was significantly lower in the red LED spectra group than in the
control group. Kojima et al. [15], which demonstrated variety LED
spectra, but a significant increase in VAL-opsin was detected in fish
exposed to green LED spectra. In addition, the expression levels of
Val-opsin gene over time were investigated in goldfish irradiated
with white (control), red, and green LEDs. The VAL-opsin gene
investigated were found to increase in the photophase. These
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Fig. 3. Changes in the expression levels of vertebrate ancient long opsin (VAL-opsin)
mRNA in the hypothalamus (A; in vivo) following GTH (5 pg/uL or 10 pg/ulL) treatment,
and hypothalamus cell culture (B; in vitro). The white bar underneath the graph rep-
resents the photophase and the black bar represents the scotophase. Values with
different characters are significantly difference exposed to the different LEDs spectra in
fish within the same time (P < 0.05). The asterisks (*) indicates significant differences
within the same zeitgeber time (P < 0.05). All values are means + SE (n = 5).
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Fig. 4. Changes in the expression levels of GTHa protein (A) and GTHa (B), FSHB (C),
and LHP (D) mRNA expression in the pituitary under red (R) and green (G) light-
emitting diodes (LEDs) and a white fluorescent bulb (Cont.). The white bar under-
neath the graph represents the photophase and the black bar represents the scoto-
phase. Values with different characters are significantly difference exposed to the
different LEDs spectra in fish within the same time (P < 0.05). The asterisks (*) in-
dicates significant differences between times within the same LEDs spectra (P < 0.05).
All values are means + SE (n = 5).

results are in agreement with a previous study by Moore & Whit-
more [32], which demonstrated that VAL-opsin mRNA expression
levels in the photophase were significantly higher than those in the
scotophase in zebrafish (Danio rerio). In the present study, VAL-
opsin was highly expressed in the photophase, thereby confirm-
ing that this protein is sensitively also controlled by light in the
goldfish.

Furthermore, previous study confirmed that the distinctive
pattern of VA opsin expressing neurons is remarkably similar to the
distribution of GnRH neurosecretory neurons in the avian brain
[33]. Although it may suggest the relationship between VAL-opsin
and sexual development and maturation, the mutual expression
of VAL-opsin and maturation-related hormone is not clearly
known. So, we further examined the expression of VAL-opsin
following 5 ug/g and 10 ug/g GTH injections to investigate the as-
sociation between HPG axis and VAL-opsin on sex maturation of
goldfish. As the results, the VAL-opsin mRNA expression in the GTH
injection groups was significantly higher than that in the non-
injection group and stimulated by the higher dose (10 pg/g) of
GTH than the lower dose (5 pg/g). Also, the results of cultured hy-
pothalamus cells treated with GTH were similar to those of
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experiments conducted in vivo. This finding suggested that VAL-
opsin genes was promoted the expression of GTHs in fish.

We further investigated the change in mRNA and protein levels
of GTHs over time in fish exposed to red and green LED spectra. GTH
mRNA and protein expression levels were significantly higher at
ZT12 and ZT36 than at other time points. The present results are in
agreement with a previous study by Karigo & Oka [27], which
showed that light stimulation increased the synthesis and secretion
of GnRH, leading to HPG axis activation to promote maturation.
Additionally, in the present study, GTHs mRNA and protein
expression levels were significantly higher in the green LED groups
than the other groups, and those in the red LED group were
significantly lower than the control levels. The present results are in
agreement with those of a previous study by Shin et al. [28], which
demonstrated that goldfish bred for 4 months under different LED
wavelengths had significantly higher GnRH and GTH mRNA
expression levels in the green LED groups than in the other groups,
and the levels in the red LED groups were significantly lower than
those in the other groups. Our results are also in agreement with a
previous study by Choi et al. [34], in which long-afterglow phos-
phorescent pigment (luminous sheet) were used to emit green
spectra, which accounts for both extended light conditions as well
as green light, and showed that mRNA expression levels of GTHs of
yellowtail damselfish (Chrysiptera parasema) increased and could
promote sexual maturation.

In summary, we suggested that fish maturation is associated
with light spectra in terms of the molecular mechanism and
physiological response. Our findings support the hypothesis that
VAL-opsin sensitively reacts to green spectra in goldfish. Further-
more, VAL-opsin and maturation-related hormones may interact to
affect fish maturation. However, further studies on the effect of
wavelength intensity on fish maturation and growth are required.
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