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Abstract

The effects of ovine prolactin (oPRL) on osmoregula-

tory ability (electrolyte balance, plasma osmolality

and activity of gill chloride cells and gill Na+/K+-

ATPase) and stress responses (plasma cortisol, glu-

cose, aspartate aminotransferase: AST and alanine

aminotransferase: ALT) were investigated in black

porgy transferred to freshwater (FW). Fish in seawa-

ter (SW) were injected twice at a 24 h interval with

oPRL (at 1, 3, or 5 lg g–1 body weight) or vehicle

(0.9% NaCl) and then transferred to FW. They were

sampled 3 days after the transfer. With oPRL at

5 lg g–1, levels of plasma Na+ and Cl� and osmolal-

ity were significantly higher than in saline-treated

fish, whereas gill CCs number and Na+/K+-ATPase

activity were lower. Also, the 5 lg g–1oPRL treat-

ment led to significantly lower plasma cortisol levels

than did saline treatment. However, there were no

significant differences in plasma AST and ALT

between groups. These results support the positive

osmoregulatory role of PRL in black porgy during

FW adaptation.

Keywords: black porgy, freshwater adaptation,

osmoregulation, stress response, exogenous pro-
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Introduction

Prolactin (PRL), growth hormone and cortisol play

important osmoregulatory roles in teleosts. PRL,

secreted by the pituitary gland, is essential for sur-

vival and the retention/uptake of Na+ of vertebrates

in fresh water (FW) (Loretz & Bern 1982; Hirano

1986; McCormick 2001). Hyperosmoregulatory role

of PRL has been studied in several teleosts. Plasma

PRL level was found to decrease in many salmonids

when they were transferred from FW to seawater

(SW) (Prunet & Boeuf 1989; Young, Bjornsson,

Prunet, Lin & Bern 1989; Yada, Takahashi & Hir-

ano 1991), however, tilapia (Oreochromis mossambi-

cus) showed increased levels of plasma PRL when

transferred from SW to FW (Yada, Hirano & Grau

1994; Shepherd, Sakamoto, Hyodo, Ball, Nishioka,

Bern & Grau 1999). In gilthead seabream (Sparus

aurata) PRL-secreting cells had significantly

increased after transfer from SW to FW (Mancera,

Perez-Figares & Fernandez-Llebrez 1993). Likewise,

the levels of PRL mRNA expression and plasma PRL

were increased in hypoosmotic media (Yamauchi,

Nishioka, Young, Ogasawara, Hirano & Bern 1991;

Morgan, Sakamoto, Grau & Iwama 1997; Lee,

Kaneko & Aida 2006).

Treatment with exogenous PRL diminishes the

permeability of the skin in teleosts to ions and

water (Hirano 1986). It decreases gill Na+/K+-

ATPase activity in salmonid and non-salmonid;

the activity of gill Na+/K+-ATPase decreased when

PRL was injected into rainbow trout (Oncorhynchus

mykiss) (Madsen & Bern 1992), and ovine PRL

(oPRL) also reduced gill Na+/K+-ATPase activity in

SW and BW-adapted silver seabream (Sparus sarba)

(Kelly, Chow & Woo 1999).
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Black porgy (Acanthopagrus schlegeli) is a marine

aquaculture species in Korea, but its low salinity

culture is also being investigated in view of the

superior osmoregulatory ability of this species.

Low salinity culture of black porgy may produce

advantages to the conventional SW culture.

Firstly, higher growth could be expected in fish

adapted to isosmotic media due to amount of

energy available for fish growth by altering the

energetic cost for osmoregulation (Iwama 1996),

Diseases such as parasites and bacteria are also

controlled by osmotic shock (Min, Jeong, Noh,

Lim, Choi & Chang 2006). In aquaculture, salinity

changes cause a variety of physiological stress

responses including plasma hormones, energy

metabolism and electrolyte equilibrium reactions

(Barton & Iwama 1991). Cortisol plays a role of

mediating stress related gluconeogenesis (Momm-

sen, Vijayan & Moon 1999). Hyperglycaemia is

known to satisfy the increased energy require-

ments due to stress (Vijayan, Pereira, Grau &

Iwama 1997). Aspartate aminotransferase (AST)

and Alanine aminotransferase (ALT) are amino

transfer enzymes and a general index of liver func-

tion in vertebrates. High AST and ALT generally,

but not definitively, indicate the weakening or

damage of normal liver function (Pan, Chien &

Hunter 2003). Aminotransferases are also used to

evaluate the stress responses and health in several

fish (De Smet & Blust 2001; Almeida, Diniz, Mar-

ques, Faine, Ribas, Burneiko & Novelli 2002; Choi,

Min, Jo & Chang 2007).

Salinity stress can depress the physiological con-

dition and homeostasis of fish and affect growth

and survival (Wada, Aritaki & Tanaka 2004).

Thus, hormonal treatment such as PRL to reduce

osmoregulatory stress is being considered as a

means of adaptaion to hypoosmotic media.

The aim of this study was to verify the hyper-

osmoregulatory action of PRL on plasma ions,

osmolarity, gill CCs number and size and gill Na+/

K+-ATPase activity in black porgy, and to investi-

gate the correlation between PRL and stress on

the basis of plasma cortisol, glucose and amin-

otransferases.

Materials and methods

Experimental fish

The 60 black porgy (average length 18.0 ± 1.1 cm,

weight 113.1 ± 26.3 g) were obtained from the

culture cages of the Marine Science Technology

Center (Pukyong National University, Busan,

Korea) and held in a recirculating SW (33 psu) sys-

tem in the laboratory for 2 weeks. The fish were

divided into six 400 L square aquariums containing

SW, with 10 fish in each, and were adapted for

24 h. They were fed daily commercial extrude pel-

lets (42% protein, 7% fat, 4% fibre, 17% ash and

2.7% phosphorus, Jeilfeed, Daejeon, Korea) at 1–2%

body weight. They were fasted for 24 h before hor-

mone injection and before blood was sampled. FW

(or SW) temperature was maintained at 18°C, and
the photoperiod was a 12L/12D cycle for the experi-

ment.

Experimental design

Fish were anaesthetized with 200 mg L–1 tricaine

methanesulfonate (MS-222) (Sigma, St. Louis, MO,

USA) and weighed. Ovine prolactin (oPRL) (20–

50 IU mg–1, Sigma) dissolved in 0.9% saline was

injected intraperitoneally at 1, 3, or 5 lg g–1 body

weight and the fish were placed back in SW. These

doses are same or similar to those of hypeosmoreg-

ulatory effects of oPRL in other teleost (Seidelin &

Madsen 1999; Mancera, Carrión & Rı́o 2002;

Jackson, McCormick, Madsen, Swanson & Sullivan

2005). Sham fish were injected with saline only.

Control fish were taken out and handled and an-

aesthetized in the same way as the sham and

experimental fish without hormone or saline. Fish

were returned to their SW tanks, with each tank

holding 10 fish that had all received the same

treatment. A second injection was given 24 h after

the first injection, and the fish were then trans-

ferred immediately to five 400 L square aquariums

containing FW (underground water containing in

mg L–1; 58 Na+, 4 K+, 21 Ca2+, 28 Mg2+,

44 C1�, 590 HCO3
�, 29 SO4

2�, 7.6 pH). No mor-

tality was observed during the experiments.

Blood and tissue sampling

Three days after transfer to FW, fish were anaes-

thetized with 200 mg L–1 MS-222 prior to collec-

tion of blood and gill tissue. Blood was collected

from the caudal vasculature in a 3 mL syringe

coated with heparin. Plasma samples were sepa-

rated by centrifugation for 5 min at 9800 9 g

and 4°C and were stored at �80°C until analysis.

Fish were killed by spinal transection for the col-

lection of the gill sample. For measurement of
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Na+/K+-ATPase activity, left gill filaments were

placed in SEI buffer (150 mM sucrose, 10 mM

EDTA, 50 mM imidazole, pH 7.3) and frozen at

�80°C. For measurement of CCs number and size,

right gill filaments were fixed in Champy–Maillet

solution (0.4% OsO4 + 2.0% ZnI2) for 24 h at

room temperature.

Analysis of plasma parameters

Plasma cortisol was analysed using a commercially

available competitive radioimmunoassay (Coat-a-

count, Diagnostics Product, Los Angeles, CA, USA)

and an automatic gamma counter (1470 Wizard

Automatic Gamma Counter, Perkin-Elmer, Turku,

Finland). The lower detection limit of the assay was

0.5 ng mL–1. Intra- and inter-assay coefficients of

variation were 8.9% and 7.6% respectively. Plasma

glucose, aspartate aminotransferase (AST), alanine

aminotransferase (ALT), Na+ and Cl– were analy-

sed with a Biochemistry Auto analyzer (model

7180; Hitachi, Tokyo, Japan). Plasma osmolality

was examined with a Vapor Pressure Osmometer

(Vapro 5520; Wescor, Logan, UT, USA).

Analysis of gill Na+/K+-ATPase, and CCs number

and size

Gill Na+/K+-ATPase activity was determined

using the method of McCormick (1993) and

expressed as lmol ADP mg protein�1 h�1. The

tissue fixed in Champy–Maillet solution was

embedded in paraffin, and cut in 7 lm sections

serially. The sections were examined using light

microscopy. The number and size of CCs were

analysed with an image analysis system (Matrox

Inspector 2.0 Program, Matrox Electronic System,

QC, Canada). About 90 sections were examined

from gill tissue. CCs number was measured on

two filaments per fish, CCs size was measured for

biggest size of each cell.

Statistics

All data were analysed with the SPSS statistical

package (version 10.0; SPSS, Chicago, IL, USA).

One-way ANOVA followed by a post hoc multiple

comparison test (Duncan’s test) was used to com-

pare differences in the data of FW. Results were

considered significantly different at P < 0.05. Dif-

ferences between SW group and each FW group

were analysed using Student’s t-test.

Results

Osmoregulatory ability

Transfer from SW to FW induced significant reduc-

tion in plasma Na+, Cl� and osmolality. In FW,

black porgy injected with oPRL at 5 lg g–1 body

weight had significantly higher plasma Na+ and

Cl� than those injected with saline alone. Fish

injected with oPRL at 3 lg g–1 or 5 lg g–1 body

weight had significantly higher plasma osmolality

than those injected with saline and the control

fish. However, oPRL at 1 lg g–1 had no effect on

plasma osmolality (Table 1).

Gill Na+/K+-ATPase activity was lower in FW-

than SW- adapted fish. In FW, the enzyme activity

of fish injected with oPRL at 5 lg g–1 body weight

was significantly lower than that in sham-treated

or control fish (Fig. 1).

With gill tissue fixed in Champy-Maillet solution,

ZnI2 stains the mitochondrial membrane of CCs,

which are generally found around the epithelium

in the interlamellar space. Three days after trans-

fer from SW to FW, number of CCs decreased in

fish injected with oPRL (> 3 lg g–1), however, no

Table 1 Levels of plasma Na+, Cl� and osmolality after transfer from seawater (SW) to freshwater (FW) of black porgy

injected twice with ovine prolactin (oPRL)

SW

FW

Control Sham

oPRL (lg g–1)

1 3 5

Na+ (mEq L–1) 178.2 ± 1.3 155.5 ± 2.0a,*** 159.6 ± 2.8ab,*** 162.0 ± 1.1abc,*** 164.7 ± 1.4bc,*** 169.0 ± 1.6c,**

Cl� (mEq L–1) 155.5 ± 2.0 136.0 ± 2.5a,* 138.5 ± 4.0a,* 137.5 ± 2.5a,* 144.0 ± 1.6ab,* 148.5 ± 1.3b,*

Osmolality (mOsm kg–1) 350.0 ± 1.4 324.3 ± 2.3a,*** 324.7 ± 3.0a,*** 326.6 ± 1.5a,*** 336.8 ± 1.3b,*** 340.3 ± 0.6b,**

Values are mean ± SEM. (n = 8–10). Same letters indicate no difference among groups after transfer to FW (P < 0.05). *P < 0.05,

**P < 0.01, ***P < 0.001 compared with SW group.
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effect of oPRL treatment on size of the CCs was

observed (Table 2).

Stress responses

Transfer from SW to FW caused significant

increase in plasma cortisol (except fish injected

with oPRL at 5 lg g–1 body weight) and glucose.

In FW, plasma cortisol levels were significantly

lower after injection with oPRL or saline than

those in the controls, plasma glucose levels fol-

lowed a similar pattern to that of cortisol, with fish

injected with oPRL at 5 lg g–1 body weight had

significantly lower plasma glucose (Fig. 2).

The transfer to FW did not induce significant

changes in AST and ALT. Fish injected with oPRL

at 5 lg g–1 body weight had lower AST than that

in the control fish in FW. However, oPRL injection

had no effect on ALT (Fig. 3).

Discussion

In SW, teleost have osmoregulatory mechanisms

to replace water lost through osmosis to the ambi-

ent water and to discharge salt that is absorbed,

whereas in FW, fish need to replace salt lost

through diffusion to the surrounding water and to

eliminate excess water absorbed; in this way, a

stable hydromineral balance is maintained. In

marine euryhaline teleost, transfer from SW to

hypoosmotic environments induces changes in

osmotic plasma parameters and consequent activa-

tion of an osmoregulatory system to recover the

original values (Mancera et al. 2002). However,

the salinity stress extends the ‘acute phase’, which

is an unstable phase of physiological response to

changes in salinity, during which the physiological

activity of the fish is lowered (McCormick & Brad-

shaw 2006). Thus, reduction in the acute phase is

the key for the low salinity culture of marine eury-

haline teleosts such as black porgy. In this study

black porgy, a SW species, was treated with PRL

to strengthen osmoregulatory ability and to

shorten the acute phase in FW.

The osmoregulatory role of PRL facilitating

adaptation to hypoosmotic environments is well

established in teleost (McCormick 1995; Manzon

2002). In this study, injection with oPRL (at

5 lg g–1 body weight) before transfer of the fish

from SW to FW increased plasma ions and osmo-

Figure 1 Gill Na+/K+-ATPase activ-

ity after transfer from SW to FW of

black porgy injected twice with

oPRL. Values are mean ± SEM.

(n = 8–10). Same letters indicate

no difference among groups after

transfer to FW (P < 0.05). *P <
0.05, **P < 0.01 compared with

SW group.

Table 2 Number and size of chloride cells (CCs) after transfer from seawater (SW) to freshwater (FW) of black porgy

injected twice with ovine prolactin (oPRL)

SW

FW

Control Sham

oPRL (lg g–1)

1 3 5

Number of CCs/filament 137.0 ± 5.3 130.7 ± 3.5a 128.0 ± 4.2a 126.0 ± 4.3a 111.7 ± 6.4a,* 76.0 ± 7.2b,**

Size of CCs (lm) 11.9 ± 0.4 12.5 ± 0.8a 11.1 ± 0.5a 13.2 ± 0.7a 9.8 ± 0.5a 10.1 ± 0.4a

Values are mean ± SEM. (n = 10). Same letters indicate no difference among groups after transfer to FW (P < 0.05). *P < 0.05,

**P < 0.01, ***P < 0.001 compared with SW group.
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lality and decreased Na+/K+-ATPase activity in the

gills in FW; this indicates that PRL facilitates

hyperosmoregulation in FW-adapted black porgy.

This agrees with previous reports on euryhaline te-

leosts. PRL injections inhibited gill Na+/K+-ATPase

of hypophysectomized killifish (Fundulus heterocli-

tus) in FW (Pickford et al. 1970). PRL also

decreased gill Na+/K+-ATPase of grey mullet (Che-

lon labrosus; Gallis, Lasserre & Belloc 1979), catfish

(Heteropneustes fossilis; Parwez & Goswami 1985),

rainbow trout (Madsen & Bern 1992) and tilapia

(O. mossambicus; Sakamoto, Shepherd, Madsen,

Nishioka, Siharath, Richman, Bern & Grau 1997)

in FW, silver seabream (Kelly et al. 1999) gilthead

sea bream (Mancera et al. 2002) and hybrid

striped bass (Morone saxatilis 9 M. chrysops: Jack-

son et al. 2005) in SW. Actually, this hyperosm-

oregulatory action of PRL should allow most

euryhaline marine fish to live in hypoosmotic

media with plasma osmolality similar to that in

fish adapted to SW. In this study, oPRL at 3 lg g–

1 increased plasma osmolality, although this dose

did not significantly decrease Na+/K+-ATPase

activity. This supports previous suggestions that

plasma osmolality may not always be regulated by

Na+/K+-ATPase activity in the gills: Herndon,

McCormick and Bern (1991) found that PRL injec-

tions increased plasma ion levels without changing

gill Na+/K+-ATPase activity in tilapia (O. mossam-

bicus), and Jackson et al. (2005) reported that the

ability of PRL to offset decreases in plasma osmo-

lality and ions is not necessarily linked to reduc-

tion in gill Na+/K+-ATPase activity in hybrid

striped bass.

The gill is the primary site of osmoregulation in

teleosts. Within the gill epithelium, CCs (or mito-

chondria-rich cells) are involved in salt secretion

in SW and ion uptake in FW (Foskett & Scheffey

1982; Hiroi, Kaneko, Seikai & Tanaka 1998). The

number and size of CCs and the expression levels

of their protein components such as Na+/K+-

ATPase, and ion channels and transport, are

influenced by the environmental osmotic and hor-

monal signals (Hirose, Kaneko, Naito & Takei

2003). For instance, cortisol can increase the

density and size of branchial CCs in salmonids

(Madsen 1990), and increase expression of the

Na-K-2Cl co-transporter in the gill of Atlantic sal-

mon (Salmo salar) acclimated to FW (Pelis &

McCormick 2001). Similarly, growth hormone and

Figure 2 Levels of plasma cortisol

and glucose after transfer from SW

to FW of black porgy injected twice

with oPRL. Values are mean ±
SEM. (n = 7–10). Same letters indi-

cate no difference among groups

after transfer to FW (P < 0.05).

*P < 0.05, **P < 0.01, ***P <
0.001 compared with SW group.

© 2011 Blackwell Publishing Ltd, Aquaculture Research, 43, 1891–1899 1895

Aquaculture Research, 2012, 43, 1891–1899 Osmoregulation and stress response in FW-adapted black porgy M S Park et al.



insulin-like growth factor I can increase the den-

sity and size of CCs (McCormick 1995, 2001). On

the other hand, PRL can reduce the density (or

size) of gill CCs in teleosts acclimated to FW (Gallis

et al. 1979; Evans 2002), this is similar to our

result, in which exogenous PRL (at 5 lg g–1 body

weight) reduced CCs number in the gills of black

porgy, although it had no effect on CCs size. In

SW, PRL also reduced CCs number in striped bass

(Morone saxatilis; Madsen, Nishioka & Bern 1997)

or CCs size in tilapia (O. niloticus; Pisam, Auperin,

Prunet, Rentier-Delrue, Martial & Rambourg

1993).

Mammalian hormones such as oPRL and ovine

growth hormone have been frequently used to

research the osmoregulation system of teleost

(McCormick 1995; Seidelin & Madsen 1999; Man-

zon 2002). Jackson et al. (2005) showed that gill

Na+/K+-ATPase activity in hypophysectomized

hybrid striped bass was significantly lower in fish

receiving homologous and heterologous oPRL at a

dose 10 ng g–1 and 20 lg g–1 body weight respec-

tively. This result indicates that heterologous

hormones are not well affined with the hormone

receptors of teleosts (Mancera et al. 2002), thereby

the biological activity of these hormones is unpre-

dictable. Use of oPRL decreases gill Na+/K+-

ATPase activity in killifish and rainbow trout, but

increases kidney Na+/K+-ATPase activity in killi-

fish (Pickford et al. 1970; Madsen & Bern 1992)

and increases gill Na+/K+-ATPase activity in

Atlantic salmon (Boeuf, Marc, Prunet, le Bail &

Smal 1994). In tilapia (O. mossambicus), oPRL had

no effect on gill Na+/K+-ATPase activity (Herndon

et al. 1991; Auperin, Rentier-Delrue, Martial &

Prunet 1995). In the present study, the concentra-

tion of oPRL required for effective hyperosmoregu-

lation was 5 lg g–1 body weight; this was also the

dose required to increase plasma osmolality in

hypophysectomized hybrid striped bass (Jackson

et al. 2005), whereas 2 lg g–1 was sufficient in

striped bass in FW (Madsen, Nishioka & Bern

1996). Thus, the efficacy of oPRL may depend on

fish species, size (or age), physiological conditions,

target organs and dose.

When fish are exposed to a stressor, the activity

of the hypothalamus-pituitary-interrenal axis is

increased, resulting in secretion of cortisol in the

blood (Perry & Reid 1993; Wendelaar Bonga 1997;

Chang & Hur 1999). Secondary responses include

Figure 3 Levels of plasma AST and

ALT after transfer from SW to FW

of black porgy injected twice with

oPRL. Values are mean ± SEM.

(n = 8–10). Same letters indicate

no difference among groups after

transfer to FW (P < 0.05).
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imbalances in the concentrations of ions in the

blood, increases in AST and ALT, increased cardiac

pulse, increased oxygen consumption and energy

stimulus, i.e. increased blood glucose (Eddy 1981;

Carmichael, Tomasso, Simco & Davis 1984; McDon-

ald & Milligan 1997). In the present study, fish

transferred to FW without hormone treatment or

vehicle had higher plasma cortisol (318 ng mL–1)

and glucose (89 mg dL–1) levels than those reported

for non-stressed black porgy in SW (cortisol,

10–35 ng mL–1; glucose, 52–55 mg dL–1) (Min,

Kim, Hur, Bang, Byun, Choi & Chang 2003; Chang,

Min & Choi 2007; Choi et al. 2007). The fish that

received oPRL at 5 lg g–1 body weight had signifi-

cantly lower plasma cortisol (34 ng mL–1) than did

control or sham-treated fish. According to a previ-

ous study, transfer from SW to FW induced an

increase in plasma cortisol that reached its peak

within 24 h and then started to decrease, at which

time PRL mRNA increased (Chang et al. 2007).

These results strongly suggest that endogenous or

exogenous PRL reduces stress responses during

adaptation of marine euryhaline teleosts to a

hypoosmotic environment, because this hormone

enhances hyperosmoregulation through ions reten-

tion by reduced gill Na+/K+-ATPase activity, and

CCs number during adaptation to FW.
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