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Abstract
We investigated the differences in the expression of the neurohormones kisspeptin (Kiss) and gonadotropin-inhibitory hormone 
(GnIH) and cytochrome P450 aromatase (P450arom), gonadotropin hormones (GTHs), and sex steroids in the goldfish Carassius 
auratus exposed to light-emitting diodes (LEDs). The expression levels of Kiss1, Kiss2, G-protein-coupled receptor 54 (GPR54), 
GTHs, GnIH, and P450arom were compared between the control (white light) and LED-treated goldfish. Furthermore, we mea-
sured the plasma levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The levels of Kiss1 mRNA and 
protein; Kiss2, GPR54, and GTHα protein; GTH mRNA; and plasma FSH and LH in the hypothalamus and cultured hypothalamus 
cells were significantly higher in the green and purple LED treatment groups than in the other groups. These results suggested that 
red LEDs inhibit the sex maturation hormones, Kiss, GPR54, GTHs, and P450arom, and that GnIH plays a role in the negative 
regulation of reproductive function in goldfish.

Key words: Cytochrome P450 aromatase, Gonadotropin hormones, Gonadotropin-inhibitory hormone, G protein-coupled recep-
tor 54, Kisspeptin, Light-emitting diodes

Introduction

Light is a potent environmental factor with several in-
formative characteristics—quality (spectra or wavelength), 
quantity (intensity), and periodicity (photoperiod)—that have 
a profound effect on the physiological function in fish such as 
reproduction and growth (Boeuf and Le Bail, 1999). Among 
these characteristics, periodicity is a crucial determinant of 
reproductive success in fish and its importance in the initia-
tion and termination of gonadal development has been stud-
ied extensively (Bromage et al., 2001; Pankhurst and Porter, 
2003). In fish, sexual development and gonadal maturation 
are regulated by hormones of the hypothalamus-pituitary-

gonad (HPG) axis, including gonadotropin-releasing hormone 
(GnRH), and other neurohormones, gonadotropins, and go-
nadal steroid hormones and peptides (Lee et al., 2001). GnRH 
regulates the secretion of both gonadotropins—luteinizing 
hormone (LH) and follicle stimulating hormone (FSH)—and 
acts as a key neurohormone in vertebrate reproduction (Roch 
et al., 2011).

Besides, a neurohormone named kisspeptin (Kiss), a mem-
ber of the Arg-Phe (RF)-amide peptide family, was identified 
recently; it, along with GnRH, is known to regulate gameto-
genesis and spawn time in fish via the activity of the HPG 
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(Migaud et al., 2007). The spectral composition of incidental 
light is known to be differentially affected underwater, and 
rapid attenuation of light occurs with increasing depth (Lyth-
goe, 1979). Most studies used LEDs of specific wavelengths 
and reported that fish growth and maturation were enhanced 
by LED (Shin et al., 2012, 2013). However, Shin et al. (2012, 
2013) reported that exposure to specific long wavelengths in-
duces stress in yellowtail clownfish Amphiprion clarkii and 
yellowtail damselfish Chrysiptera parasema and thus inhibits 
growth and maturation. 

In this study, we aimed to determine the mechanism of 
how exposure to various wavelengths affects the activity of 
reproduction-related genes (maturation stimulation and in-
hibitor) such as HPG axis and GnIH pathway. We determined 
the mRNA expression levels of Kiss1, Kiss2, GPR54, GnIH, 
GTHs, and two types of P450arom and steroid hormones in 
goldfish exposed to light from a white fluorescent bulb and 
those having long (red), short (green), and mixed (purple) 
wavelengths over a 4-month period.

Materials and Methods

Experimental fish and Light-Emitting Diodes 
exposure conditions

For each experiment, immature common goldfish (n = 120; 
length, 6.1 ± 0.5 cm; weight, 12.2 ± 0.4 g; gonadosomatic in-
dex (GSI; gonad weight/body weight × 100) = 0.82 ± 0.04) 
were purchased from a commercial aquarium (Choryang, 
Busan, Korea); they were acclimated for 2 weeks in eight 
300-L circulation filter tanks in the laboratory. Each tank (each 
experimental group) included 15 fish. The fish of the control 
group were exposed to light from a white fluorescent bulb (27 
W; wavelength range 350–650 nm); the light intensity at the 
water surface was approximately 0.96 W/m2. The water tem-
perature and photoperiod were 20 ± 1°C and 12 h (lights on 
at 07:00 h), respectively. The fish of the treatment and control 
groups were fed a commercial feed twice daily (09:00 h and 
17:00 h). The fish of the treatment groups were exposed to red 
(peak at 630 nm), green (530 nm), or purple (mixed 450 nm 
and 630 nm) LEDs (Daesin LED Co., Kyunggi, Korea) (Fig. 
1). The LEDs were set 50 cm above the surface of water, and 
the irradiance at the water surface was maintained at approxi-
mately 0.9 W/m2. 

The fish were euthanized by spinal transection at 2-month 
sampling intervals—2 month (GSI; white fluorescent bulb, 
1.25 ± 0.16; red LED, 0.78 ± 0.21; green LED; 2.32 ± 0.34; 
purple LED, 1.86 ± 0.24) and 4 months (GSI; white fluores-
cent bulb, 1.82 ± 0.24; red LED, 1.91 ± 0.34; green LED; 5.09 
± 0.44; purple LED, 3.91 ± 0.34)—experimental period, brain, 
hypothalamus, ovary, and blood was collected from the 15 fish 
(mixed sex containing male and female) per tanks (n = 120; 
fluorescent bulb, plus red, green, and purple LEDs at three 

axis (Funes et al., 2003; Seminara et al., 2003). Two isoforms 
of Kiss are found in the brain of teleosts and other vertebrate 
species (Lee et al., 2009; Um et al., 2010); further, two paralo-
gous genes of Kiss were named as Kiss1 and Kiss2 according 
to the order of their discoveries. In the hypothalamus, Kiss, its 
receptor, G protein-coupled receptor 54 (GPR54), and GnRH 
neurons are located in close proximity and regulate puberty 
(Colledge, 2009; Roa et al., 2011). In addition, the KISS1-
GPR54 signal system is known to regulate reproduction by 
controlling GnRH secretion from the hypothalamus (Roa et 
al., 2011). 

In 2000, an RFamide-type neuropeptide, gonadotrophin in-
hibitory hormone (GnIH), was identified; it had an inhibitory 
effect on pituitary gonadotrophin hormone (GTH) secretion 
in the Japanese quail, suggesting the presence of an inhibi-
tory hypothalamic neuropeptide in the control of the HPG axis 
(Tsutsui et al., 2000). In the brain of birds and mammals, 
hypothalamic GnIH fibers are in close contact with GnRH 
neurons, and GnIH might influence the GnRH system at the 
neuron and fiber terminal levels. Therefore, GnIH might also 
act at the level of the hypothalamus to regulate gonadotropin 
release (Bentley et al., 2003; Ubuka et al., 2008). Besides go-
nadotropin release, GnIH inhibited gonadotropin biosynthesis 
in teleost (Ciccone et al., 2004; Falcón et al., 2010). Zang et al. 
(2010) was reported that intraperitoneal administration of the 
mature zebrafish GnIH peptide could significantly reduce the 
basal serum LH level in goldfish. Thus, GnIH is considered 
to modulate maturation and reproduction at the level of the 
hypothalamus by interacting with GnRH neurons (Smith and 
Clarke, 2010).

The cytochrome P450 aromatase (P450arom), a steroido-
genic enzyme, belongs to the cytochrome P450 superfamily 
and regulates the steroid hormone synthesis (Simpson et al., 
1994). Further, P450arom regulates and catalyzes the conver-
sion of C19 androgens (testosterone and androstenedione) to 
C18 estrogens (estrone and estradiol) and plays an important 
role in steroid hormone production and sex differentiation 
(Simpson et al., 1994). Two types of P450arom exist in fish: 
ovarian P450arom (mainly expressed in the ovary) and brain 
P450arom (mainly expressed in the brain); they are named 
P450aromA and P450aromB, respectively (Blázquez and Pi-
ferrer, 2004; Greytak et al., 2005).

Light, including photoperiod, is known to affect the activa-
tion and inhibition of GTH synthesis and secretion (Tsutsui et 
al., 2000; Smith and Clarke, 2010). Although considerable in-
formation on the effect of photoperiod on the initial develop-
ment and maturation of gonad is available (de Vlaming, 1975; 
Bromage et al., 2001; Pankhurst and Porter, 2003), the effect 
of various light wavelengths on the physiological function of 
fish has been rarely investigated (Shin et al., 2012, 2013).

Recently, light-emitting diodes (LEDs), a new form of 
technology designed to output lights of specific wavelengths, 
such as narrow bandwidth light, were discovered; these can 
be tuned to the environmental sensitivity of a target species 
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culture medium (600 μL) was added to the culture wells at 24 
h. The temperature and photoperiod were 20 ± 1°C and 12 h 
(lights on at 07:00 h), respectively.

For the experimental groups, hypothalamus cells were ex-
posed to red (peak at 630 nm), green (530 nm), or purple mix 
(mixed 450 nm and 630 nm) LEDs and to light from a white 
fluorescent bulb (control). The LEDs were set 50 cm above 
the surface of the cell culture plate, and the irradiance at the 
surface of the plate was maintained at approximately 0.9 W/
m2. The spectral analysis of the lights was performed using a 
spectroradiometer (FieldSpec®, ASD, Colorado, USA). 

Each experimental group was treated with Kiss (metastin 
45-54 amide; Sigma; 80% similarity with fish species), dis-
solved in 0.9% physiological saline at the appropriate doses 
(100 μM), and was added to the culture medium at a ratio of 
1/1,000e (v/v). The temperature was maintained using the heat 
dissipating system of LEDs (20 ± 1°C) and photoperiod were 
12 h (lights on at 07:00 h), and sampled after 48 h (12:00 h). 
Each sample was centrifuged (20°C, 10,000 g, 15 s), and su-
pernatant was removed and stored at -80°C until RNA extrac-
tion.

Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted from the brain, hypothalamus and 
ovary by using a TRIzol kit (Gibco-BRL, USA) according to 
the manufacturer’s instructions. Reverse transcription was per-
formed using M-MLV reverse transcriptase (Bioneer, Korea) 
according to the manufacturer’s instructions. Real-time quan-
titative PCR (RT-qPCR) was performed using cDNA template 
to determine the relative expression levels of GnIH, P450aro-
mA, P450aromB, Kiss1, Kiss2, GPR54, GTHα, FSHβ, LHβ, 
and β-actin mRNA by using the total RNA extracted from the 
brain, hypothalamus, pituitary, and ovary. The primers used 
for qPCR are shown in Table 1. The PCR amplification was 
conducted similar to previous work (Nelson et al., 2007), us-
ing a Bio-Rad CFX96™ Real-time PCR Detection System 

light intensities) using a 3-mL syringe coated with heparin 
from caudal vein after anesthetization. Plasma samples were 
separated by centrifugation (4°C, 10,000 g, 5 min) and stored 
at −80°C until analysis. The fish were euthanized by spinal 
transection for the collection of brain, hypothalamus, and ova-
ry under dim white light using attenuated white fluorescent 
bulb. Immediately after collection, the brain, hypothalamus, 
and ovary were frozen in liquid nitrogen and stored at −80°C 
until total RNA extraction was performed. No mortalities were 
observed.

In vitro culture of hypothalamus cells and Kiss 
treatment 

To investigate the effects of Kiss and LED light, the gold-
fish neurons were cultured using enzymatic and mechani-
cal procedures. Hypothalamus tissue was rapidly removed 
and placed in 3 mL ice-cold dispersion buffer (Dulbecco’s 
phosphate-buffered saline, without calcium chloride and mag-
nesium chloride, containing 100 U/mL penicillin, 100 μg/
mL streptomycin, and 2.5 μg/mL fungizone; GIBCOBRL, 
Rockville, MD). The isolated hypothalamus tissues were 
then transferred to 6 mL of fresh dispersion buffer containing 
0.25% trypsin (Type II-S from porcine pancreas; Sigma). The 
connective tissues and other impurities were removed, and the 
hypothalamus tissues were chopped into small pieces by using 
a pair of scissors. Hypothalamus cells and the minced hypo-
thalamus tissue were transferred to a flask and incubated for 
10 min at room temperature with slow stirring. The mixture of 
dispersed hypothalamus cells and tissues was filtered, and the 
culture medium (neurobasal medium, without l-glutamine, 
containing 100 U/mL penicillin, 100 μg/mL streptomycin, 2.5 
μg/mL fungizone, and 1% fetal bovine serum; Gibco-BRL) 
was added. The cell suspension was centrifuged at 800 g for 
10 min, and the cells were then resuspended in fresh culture 
medium. Hypothalamus cells (1.2 × 106 cells/800 μL/well) 
were applied to a 24-well tissue culture plate at 06:00 h. Fresh 

Fig. 1. Spectral profiles of red, green, and purple [mixed blue (450 nm) and red (630 nm)] light emitting diodes (LEDs) and white fluorescent bulb (Cont.) 
used in this study. Reprinted from ref. Shin et al. (2011), with permission from Comparative Biochemistry and Physiology, Part-A.
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protein (30 μg per lane) was loaded onto a 4% acrylamide 
stacking gel and a 12% acrylamide resolving gel; a protein 
ladder (Fermentas, Hanover MD, USA) was used for refer-
ence. Samples were electrophoresed at 80 V through the stack-
ing gel and at 150 V through the resolving gel until the bromo-
phenol blue dye front had run off the gel. The gels were then 
immediately transferred to a 0.2-μm polyvinylidene difluoride 
membrane (Bio-Rad) at 85 V for 1.5 h at 4°C. Subsequent-
ly, the membranes were blocked with 5% skimmed milk in 
Tris-buffered saline (TBS, pH 7.4) for 45 min and washed in 
TBS. The membranes were incubated with Kiss antibodies 
(dilution, 1:4000; 80% similarity with fish species; bs-0749R; 
Bioss, San Diego, USA) and GTHα antibodies [anti-goldfish 
GTHα; a polyclonal rabbit antibody; dilution,1:4,000; cour-
tesy of M. Kobayashi (Kobayashi et al., 2006)], followed by 
incubation with horseradish peroxidase (HRP)-conjugated 
anti-rabbit IgG secondary antibodies (dilution, 1:5,000; Bio-
Rad) for 60 min. The internal control was β-tubulin (dilution, 
1:5,000; ab6046, Abcam, Cambridge, UK). Bands were de-
tected using the sensitive electrochemiluminescence (ECL) 
system (ECL Advance; GE Healthcare Life Sciences, Up-
psala, Sweden) and exposed for 2 min by using a Molecular 
Imager® ChemiDocTM XRS+ Systems (Bio-Rad). The mem-
brane images were scanned using a high-resolution scanner, 
and the band density was estimated using a computer program 
(Image Lab™ Software, version 3.0; Bio-Rad). The ratio of 
internal control (β-tubulin)/Kiss and GTHα for each concen-
tration was calculated and plotted against the concentration of 
the internal control.

(Bio-Rad, Hercules, CA, USA) and iQ™ SYBR Green Super-
mix (Bio-Rad) according to the manufacturer’s instructions. 
The QPCR was performed as follows: 95°C for 5 min, fol-
lowed by 50 cycles each of 95°C for 20 s and 55°C for 20 s. 
All analyses were based on the cycle threshold (ΔCt) values 
of the PCR products. The Ct was defined as the PCR cycle at 
which the fluorescence signal crossed a threshold line that was 
placed in the exponential phase of the amplification curve. Af-
ter the PCR program, QPCR data from three replicate samples 
were analyzed with analysis software of the system (Bio-Rad) 
to estimate transcript copy numbers for each sample. In addi-
tion, to ensure that the primers amplified a specific product, 
we performed a melting curve analysis, which showed that 
the products of each primer pair had a single melting point 
(only one temperature). As internal controls, experiments 
were triplicated with β-actin, and all data were expressed rela-
tive to the corresponding β-actin calculated ΔCt levels. The 
calibrated ΔCt value (ΔΔCt) for each sample (Kiss, GPR54, 
GTHs, P450aroms, and GnIH) and internal controls (β-actin) 
was calculated as: ΔΔCt = 2^-(ΔCtsample - ΔCtinternal control). 

Western blotting

Total protein was extracted from the hypothalamus of gold-
fish by using a protein extraction buffer (5.6 mM Tris, 0.55 
mM ethylenediaminetetraacetic acid (EDTA), 0.55 mM ethyl-
ene glycol tetraacetic acid (EGTA), 0.1% sodium dodecyl sul-
fate (SDS), 0.15 mg/mL phenylmethylsulfonyl fluoride, and 
0.15 mg/mL leupeptin). The protein samples were sonicated 
and quantified using the Bradford method (Bio-Rad). Total 

Table 1. Primers used for RT-qPCR amplification

       Genes (Accession no.) Primer                         DNA sequences

GnIH (AB078976) Forward 5ʹ-CGG AGT CTG GAG ATA GAA GA-3ʹ
Reverse 5ʹ-ACG TGT GTT GGT TTG GTT AT-3ʹ

Brain P450arom (AB009335) Forward 5ʹ-GAA GGC TAC GAA GTG AAG AAG-3ʹ
Reverse 5ʹ-CGA ACG GCT GGA AGA AAC-3ʹ

Ovary P450arom (AB009336) Forward 5ʹ-CAG GAG TTC ACA GAC CAC-3ʹ
Reverse 5ʹ-TCA TTG AGA GGG ATT CTT AGG A-3ʹ

Kiss1 (FJ236327) Forward 5ʹ-TGA ACC TAC TTA CCA TAA TTT TGA TG-3ʹ
Reverse 5ʹ-CCT AGAC TG GAG TGA -3ʹ

Kiss2 (KC701358) Forward 5ʹ-ATG AAA TTC AAG GCA CTG ATT-3’
Reverse 5ʹ-AGT GAA TGA GGC TCT CAA-3ʹ

GPR54 (FJ465139) Forward 5ʹ-AGT GGT CAT TGT TGT TCT CTT -3ʹ
Reverse 5ʹ-AGG AGT TGG CAT AGG ACA T-3ʹ

GTHα (D86552) Forward 5ʹ-TAT CGG TGG TGC TGG TTA-3′
Reverse 5ʹ-GCT GTC CTC AAA GTC GTT A-3′

FSHβ (D88023) Forward 5ʹ-TAT CGG TGG TGC TGG TTA-3′
Reverse 5′-GCT GTC CTC AAA GTC GTT A-3′

LHβ (D88024) Forward 5′-TAT CGG TGG TGC TGG TTA-3′
Reverse 5′-GCT GTC CTC AAA GTC GTT A-3′

β-actin (AB039726) Forward 5ʹ-TTC CAG CCA TCC TTC CTA-3ʹ
Reverse 5ʹ-TAC CTC CAG ACA GCA CAG-3ʹ
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plate, following which 50 μL of plasma, 50 μL HRP, and 50 
μL of the antibody were added to each well. The components 
were mixed well, and the microplate was incubated for 2 h at 
37°C. The wells were washed at three times using a wash buf-
fer, and the remaining buffer after the last wash was aspirated 
or decanted off, and 50 μL each of the substrates included in 
the ELISA kit were added to each well. The microplate with 
the substrate solutions was then incubated for 15 min at 37°C 
in the dark, during which the solutions changed from colorless 
or light blue to darker shades of blue. Following incubation, 
50 μL of stop solution was added to each well, resulting in the 
change of color from blue to yellow. The optical density of the 
solution in each well was then determined within 10 min by 
using a microplate reader set to 450 nm. The following stan-
dard curve concentrations were used for the ELISA: FSH and 
LH—50, 25, 12.5, 6.25, 3.12, 1.56, and 0.78 mIU/mL.

Statistical analysis

All data were analyzed using the SPSS statistical package 
(version 10.0; SPSS Inc., USA) (McCullough 1999). Two-way 
analysis of variance followed by Tukey’s post-hoc test was 
used to assess statistically significant differences among dif-
ferent time points, different light spectra, and Kiss treatments. 
A value of P < 0.05 was considered statistically significant.

Results

Expression of Kiss1 mRNA and protein, Kiss2, and 
GPR54 mRNA in the hypothalamus

We determined the effects of different light spectra on the 
expression of Kiss1 mRNA and protein, Kiss2, and GPR54 
mRNA in the hypothalamus (Fig. 2). Their expression levels 
were significantly increased until 4 months in the control and 
red LED treatment groups; the expression levels in the green 
and purple LED treatment groups were significantly higher 
than those in the control and red LED treatment groups. 

Expression of GnIH mRNA in the hypothalamus 
and cultured hypothalamus cells

GnIH mRNA expression levels were significantly de-
creased in the green and purple LED treatment groups, but 
those in the red LED treatment group increased slightly at 2 
months and then decreased until 4 months. Further, the levels 
in green and purple LED treatment groups were significantly 
lower than those in the control and red LED groups at 2 and 4 
months (Fig. 3A).

GnIH mRNA expression levels in the cultured hypothala-
mus cells were significantly higher in the control and red LED 
treatment groups than in the green and purple LED treatment 
groups. However, the expression of GnIH mRNA was signifi-

Plasma parameter analysis

Plasma samples were separated by centrifugation (4°C, 
10,000 g, 5 min), and plasma FSH and LH levels were ana-
lyzed using the immunoassay technique by using the enzyme-
linked immunosorbent assay (ELISA) kits [FSH (Catalog no., 
E0830f) and LH (Catalog no., E0441f), EIAab Science, Wu-
han, China]. 

An anti-antibody that was specific to the antibody of the 
hormones (FSH and LH) for fish was pre-coated onto a micro-

Fig. 2. Expression levels of Kiss1 protein (A) and mRNA (B), Kiss2 (C), and 
GPR54 (D) mRNA in the goldfish hypothalamus subjected to red (R), green 
(G), purple (P) light-emitting diodes (LEDs), and white fluorescent bulb 
(Cont.), as measured by quantitative real-time polymerase chain reaction 
(PCR). Total hypothalamus RNA (2.5 μg) was reverse-transcribed and 
amplified. Results are normalized with respect to the expression levels of 
β-actin. Values with letters indicate significant differences among lights of 
different times (P < 0.05). All values are means ± SE (n = 5).

A

C

B

D
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in the red LED treatment groups were significantly lower than 
those in the green and purple LED treatment groups (Fig. 5A).

Plasma LH levels in the control and red LED treatment 
groups were significantly increased until 4 months, and those 
in the red LED groups were significantly lower than those in 
the green and purple LED treatment groups (Fig. 5B).

Expression of P450arom mRNA in the brain

Brain and ovary P450arom mRNA expression levels in all 

cantly lower in the Kiss treatment groups than in the non-Kiss 
treatment groups (Fig. 3B).  

Expression of GTHs in the pituitary

GTHα mRNA and protein expression levels were signifi-
cantly increased in all the groups until 4 months; however, the 
levels in the red LED treatment group were significantly lower 
than those in the green and purple LED treatment groups (Fig. 
4A, 4B). Further, FSHβ and LHβ mRNA expression levels in 
all the groups were significantly increased until 4 months, and 
the levels in the red LED treatment group were lower than 
those in the green and purple LED treatment groups (Fig. 4C, 
4D). 

Plasma FSH and LH levels

Plasma FSH levels in the control and red LED treatment 
groups were significantly increased until 4 months, and those 

Fig. 3. Expression levels of GnIH mRNA in the goldfish hypothalamus 
(A), and GnIH mRNA in the cultured hypothalamus cells (B) exposed to 
red (R), green (G), and purple (P) light-emitting diodes (LEDs), and white 
fluorescent bulb (Cont.) by Kiss treatment, as measured by quantitative 
real-time polymerase chain reaction (PCR). (A) Values with letters indicate 
significant differences among lights of different times (P < 0.05). All values 
are means ± SE. (B) Values with letters indicate significant differences 
among Kiss treatment of different lights (P < 0.05). All values are means ± 
SE (n = 5).

A

B

Fig. 4. Changes in the expression levels of GTHα protein (A) and 
mRNA (B) FSHβ (C), and LHβ (D) mRNA in the goldfish pituitary exposed 
to red (R), green (G), and purple (P) light-emitting diodes (LEDs), and 
white fluorescent bulb (Cont.), as measured using quantitative real-time 
polymerase chain reaction (PCR). Values with letters indicate significant 
differences among lights of different times (P < 0.05). All values are means 
± SE (n = 5).

A

C

B

D
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Furthermore, we investigated the changes in GnIH mRNA 
expression levels after LED treatment and Kiss treatment. 
GnIH mRNA expression levels were significantly lower in 
all the experimental groups except in the red LED treatment 
group (Fig. 3A), and in the goldfish hypothalamus cells treated 
with Kiss were significantly lower than those in the not-treated 
group (Fig. 3B). Several ‘‘nonvisual’’ opsins are expressed in 
the zebrafish brain, and evidence linking deep brain photore-
ception to physiological responses is strongest for the hypo-
thalamus (Yokoyama et al., 1978; Mano et al., 1999; Kojima 
et al., 2008). This suggests that hypothalamus has nonvisual 
photoreceptors and could perceive lights directly, and then 
affecting hormone changes on hypothalamus. Kiss, which is 
located in the pre-optic area (POA) cells of the hypothalamus, 
stimulated the secretion of GnRH in female and male cin-
namon clownfish and played an important role in HPG axis 
activity and sexual maturation (Kim et al., 2014). Tsutsui et 
al. (2010) reported that, in vertebrates, melatonin induces neu-
ropeptide synthesis and directly induces GnIH expression via 
the GnIH receptor; thus, reproductive status is primarily con-
trolled by melatonin-activated signaling. Shin et al. (2014) re-
ported that fish could detect green wavelengths because green 

the groups were significantly increased at 4 months, but those 
in the red LED treatment group were significantly lower than 
those in the groups exposed to green and purple LED treat-
ment groups (Fig. 6). 

Discussion

The mRNA levels of Kiss1 and Kiss2 and protein level of 
Kiss1 were significantly lower in the control and red LED 
treatment groups than in the green and purple LED treatment 
groups, and the patterns of GPR54 mRNA expression levels 
were similar to those of Kiss expression levels (Fig. 2). Kiss 
and GPR54 play an important role in the physiological regula-
tion of reproductive maturation. Functionally, they participate 
in the regulation of reproductive function and fertilization 
by regulating the secretion of GTH, feedback actions of sex 
steroid hormones, and environmental signaling by activating 
GnRH neurons during puberty (Parhar et al., 2004; Tena-Sem-
pere et al., 2012). Our results thus suggest that exposure to 
long wavelength adversely affects sex maturation by inhibit-
ing goldfish sex maturation hormones.

Fig. 5. Changes in the levels of plasma FSH (A) and LH (B) in the goldfish 
exposed to red (R), green (G), and purple (P) light-emitting diodes (LEDs), 
and white fluorescent bulb (Cont.), as measured using a microplate 
reader. Values with letters indicate significant differences among lights of 
different times (P < 0.05). All values are means ± SE (n = 5).

A

B

Fig. 6. mRNA Expression of brain P450arom (A) and ovary P450arom (B) 
in the goldfish exposed to red (R), green (G), and purple (P) light-emitting 
diodes (LEDs), and white fluorescent bulb (Cont.), as measured using 
quantitative real-time polymerase chain reaction (PCR). Values with letters 
indicate significant differences among lights of different times (P < 0.05). 
All values are means ± SE (n = 5).

A

B
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al. (2012) reported that estradiol-mediated effects can be high-
ly sensitive to the dose and developmental stage. Similarly, 
Iwasa et al. (2012) reported that lower estradiol concentrations 
during the prepubertal stage have a stimulatory effect, where-
as higher concentrations during adulthood, a time also marked 
by decreases in GnIH cell number, result in the suppression of 
GnIH mRNA, and thus GnIH has inhibitory effects on estro-
gen and P450arom. Furthermore, increased brain P450arom in 
the pituitary up-regulates GTHs (Trubiroha et al., 2012); thus, 
we hypothesized that GTH mRNA expression levels were low 
due to the decreased P450arom mRNA expression levels in 
the long wavelength treatment group.

Although the relationship between light source of long 
wavelengths and regulation of sex maturation hormones re-
mains unclear, we could infer that the reason for the different 
gene expression patterns for each wavelength might be as-
sociated with the light wavelength characterization in water. 
The short end of the visible spectrum becomes predominant 
in deeper waters, whereas red light only penetrates shallow 
waters (McFarland, 1991). This theory suggests that fish could 
detect green wavelengths, which can penetrate more deeply 
than red light. Thus, we hypothesized that our results were 
closely related with the amount of light detected by the fish.

In addition, purple light is mixed wavelength, while the 
others are single wavelengths. The effect of mixed wavelength 
on sex maturation hormones shows possibility that several 
photoreceptors with wide spectral sensitivity are involved in 
regulation of goldfish sex maturation hormones. The specific 
hormones pathway or photoreceptors by mixed wavelengths 
engaged in sex maturation function, however, have not been 
identified. Further studies need to focus on differences of sin-
gle and mixed wavelengths effect in fish sex maturation hor-
mones based on these results.

In conclusion, not only Kiss but also GnIH might be in-
volved in the part of sex maturation regulation in green and 
purple LED lightening environments. Therefore, we hypoth-
esized that RFamide peptides suggest that GnIH and Kiss act 
that control reproductive activity, and green and purple LED 
lightening environments enhance fish sex maturation function 
by these hormone changes. Future studies need to focus on the 
activities of GnIH by various LED lights.
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